## Gas-chromatographic Measurements of Dinitrogen Oxide in Air

Hisafumi Muramatsu, Michio Hirota,\* and Yukio Makino Meteorological Research Institute, 1-1 Nagamine, Yatabe-machi, Tsukuba-gun, Ibaraki 305 (Received April 17, 1981)

To obtain an average tropospheric mixing ratio of dinitrogen oxide over Japan, 90 air samples were collected by aircraft at altitudes up to 7 km from Autumn, 1978, to Spring, 1979, and were analysed by the GC-ECD method. The mean volume-mixing ratio of N<sub>2</sub>O was 0.31<sub>0</sub> ppm, and the standard deviation was 0.01<sub>4</sub> ppm. These results show that the tropospheric N<sub>2</sub>O is well mixed and that its mixing ratio is higher than 0.30 ppm.

The natural dinitrogen oxide is produced by the nitrification of the ammonium ion as well as the denitrification of nitrates through microbiological activity in soil and water.<sup>1-6)</sup>

Though some sinks of  $N_2O$  have been proposed, <sup>6-8)</sup> the atmospheric  $N_2O$  is rather unreactive in the troposphere and is transferred to nitrogen monoxide mainly by Reaction (1) in the stratosphere: <sup>9)</sup>

$$N_2O + O(^1D) \longrightarrow N_2 + O_2$$
 $\longrightarrow 2NO.$ 
(1)

The NO is strongly related to the stratospheric ozone  $(O_3)$  by Reaction (2); *i.e.*, an increase in NO leads to a depletion of the stratospheric  $O_3$ : 10-13)

$$\begin{array}{cccc}
NO + O_3 & \longrightarrow & NO_2 + O_2 \\
NO_2 + O & \longrightarrow & NO + O_2 \\
\hline
\text{net} & O_3 + O & \longrightarrow & 2O_2.
\end{array} \tag{2}$$

To know the behavior of the  $N_2O$  in the atmosphere, from the ground surface<sup>8,14-26)</sup> through the troposphere<sup>14,17,20,26-32)</sup> to the stratosphere,<sup>14,17,27,30-37)</sup> and also in the sea and over the sea surface<sup>17,29,38-43)</sup> is important in understanding the global nitrogen cycle<sup>1,2,44)</sup> and the stratospheric  $O_3$  chemistry.<sup>10-13)</sup>

In a previous study,<sup>45)</sup> several measurements of the atmospheric  $N_2O$  were performed at the Meteorological Research Institute, Koenji, Tokyo, by the gas chromatographic (GC) method, using a thermal conductivity detector (TCD); the error of the measurement was estimated to be about  $\pm 7\%$ . It has been shown, however, that an electron-capture detector (ECD) has an increased sensitivity for  $N_2O$  at elevated temperatures<sup>46)</sup> and needs an air sample of only a few millilitres, while the  $N_2O$  must be preconcentrated from about 30 l of air when a TCD is used.<sup>14,15,19,38,39,47)</sup>

To obtain an average tropospheric mixing ratio of N<sub>2</sub>O over Japan, air samples obtained by aircraft from Autumn, 1978, to Spring, 1979, have been analysed by the GC-ECD method.

## **Experimental**

Sampling of Air. Three aircraft, an Aerocommander 685, a Piper Seneca, and a Cessna 404, were used for the air sampling. On the aircraft, the air was sampled through a silicone rubber tube or a tylon tube  $(1 \text{ m} \times 8 \text{ mm i.d.})$  in stainless steel cylinders (Wnitey, 0.3, 0.5, and 1.01) by means of two air pumps connected in series up to the pressure of 3.5—4.0 kg/cm². Before use, the cylinders were evacuated by means of an oil rotary pump and heated to 200 °C for several hours. DK shut-off valves (Whitey) were used for

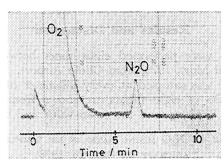



Fig. 1. The typical chromatogram of N<sub>2</sub>O. Standing current: 2.0 nA, pulse frequency: 2.5 kHz, detector temperature: 300 °C, sample air: 2 ml. N<sub>2</sub>O was 0.34 ppm.

these cylinders. The  $N_2O$  concentration was constant for more than 40 d ( $<\pm2.0\%$ ) in the cylinder.

Gas-chromatographic Analysis. GC measurements were performed using a Shimadzu Gas Chromatograph GC-6AM equipped with an ECD (10 mci <sup>63</sup>Ni, 300 °C). Nitrogen gas (99.9995%) passed through the tube filled with molecular sieve 5A (1/16 in. pellets) was used as the carrier gas at a flow rate of 40 ml/min. The sample air was transferred to a 2-ml gas sampler (Shimadzu, MGS-4) and then introduced into a glass column (3 m×3 mm i.d.) filled with 30—60 mesh molecular sieve 5A.† The peak of N<sub>2</sub>O appeared 5 min after that of oxygen gas at the column temperature of 245 °C.

The reference gas of 1 ppm  $N_2O$  was prepared by diluting 15  $\mu$ l of pure  $N_2O$  (>98%, Showa Denko) in 151 of air, which was measured by means of a gas meter and passed through a tube (30 cm×3 cm i.d.) containing silica gel and three U-shaped tubes (8 mm i.d.) containing drierite, ascarite, and molecular sieve 5A (1/16 in. pellets, 0 °C) respectively. A 15  $\mu$ l portion of  $N_2O$  was measured by means of a gas-tight syringe (SGE, 100A-RN-GSG). The molecular sieve tube was heated to 350 °C for 3 h before use. The air purified by this method was also used as a zero gas. The error in repeated measurements of single reference gas was less than  $\pm 0.9\%$ . The concentrations of five reference gases made in 20-1 tedlar bags over a period of a week were in good agreement with each other; i.e., the standard deviation was 1.7%.

A typical chromatogram of  $N_2O$  is shown in Fig. 1. The peak heights of  $N_2O$  were proportional to the quantities of  $N_2O$  from 0.39 ng to 3.9 ng, which corresponded to 0.1 ppm and 1 ppm of  $N_2O$  in 2 ml of air respectively. The error in repeated peak-height measurements for 0.3 ppm of  $N_2O$  was about  $\pm 2\%$ . The total error in the measurements of  $N_2O$  was estimated as about  $\pm 4\%$ .

<sup>&</sup>lt;sup> $\dagger$ </sup> Porapak Q and QS and Porasil B and C were also suitable for the analysis of  $N_2O$ .<sup>29)</sup>

In the present study, measurements were performed as follows; the reference gas was first measured, and then the sample air was measured two times, and finally the reference gas was measured again. The volume-mixing ratio of  $N_2O$  in the sample air was calculated from the ratio of the two mean values of the sample air and the reference gas. The average difference between two measurements of 90 air samples was  $\pm 2\%$ . The detection limit in this method was about 0.01 ppm of  $N_2O$  in 2 ml of air.

The temperature of the ECD was controlled in a range of  $\pm 2$  °C. No effect of this temperature variation could be detected on the chromatogram.

## Results and Discussion

Flights were performed eight times between Oct., 1978, and Mar., 1979, from Chofu Airport. In many cases, air was sampled at every kilometer of altitude. The results of eight flights are shown from Table 1 to Table 8, along with the mean value and the stand-

Table 1.  $N_2O$  mixing ratio in air sampled by aircraft on Oct. 26, 1978

| Altitude<br>km | Location <sup>a)</sup> | Volume-mixing ratio of $N_2O/ppm$ |  |
|----------------|------------------------|-----------------------------------|--|
| 1              | Yokohama               | 0.312                             |  |
| 2              | Yokosuka               | $0.32_{3}$                        |  |
| 3              | Takeyama               | 0.296                             |  |
| 4              | Enoshima               | $0.34_{5}$                        |  |
| 6              | Enoshima               | $0.32_2$                          |  |
| 7              | Oiso                   | 0.29,                             |  |
| 7              | Miyakejima             | $0.30_{8}$                        |  |
| 4              | Niijima                | 0.33 <sub>3</sub> c)              |  |
| 3              |                        | $0.35_1^{c)}$                     |  |
| 2              | Jogashima              | 0.33 <sub>1</sub> c)              |  |
| 1              |                        | $0.33_5^{\text{c}}$               |  |
| 1              |                        | $0.32_{6}^{c)}$                   |  |
| 0              | Chofu <sup>b)</sup>    | 0.33 <sub>5</sub> c)              |  |
|                | Mean                   | 0.315                             |  |
|                | SD                     | 0.016                             |  |

a) When the location is not shown, the air was sampled between the former and the latter locations. It is the same in Tables 2—8. b) Air was sampled just before landing. c) Air was sampled in a 5-1 tedlar bag. These values were not included in the calculation of the mean value and the SD.

Table 2.  $N_2O$  mixing ratio in air sampled by aircraft on Dec. 7, 1978

| Altitude<br>km | Location                     | Volume-mixing ratio of $N_2O/ppm$ |
|----------------|------------------------------|-----------------------------------|
| 0.5            |                              | 0.358                             |
| 0.5            | Zushi                        | 0.318                             |
| 0.5            | Niijima                      | $0.32_{6}$                        |
| 0.5            | Mikurajima                   | $0.30_{3}$                        |
| 1.5            | Mikurajima 0.31 <sub>5</sub> | 0.315                             |
| 1.7            | Niijima                      | $0.32_{0}$                        |
| 1.5            | Jogashima                    | $0.32_{5}$                        |
|                | Mean                         | 0.324                             |
|                | SD                           | $0.01_2$                          |

Table 3.  $N_2O$  mixing ratio in air sampled by aircraft on Dec. 12, 1978.

| Altitude<br>km | Location | Volume-mixing ratio of $N_2O/ppm$ |
|----------------|----------|-----------------------------------|
| 0.5            | Fujisawa | 0.31,                             |
| 1              | Fujisawa | $0.30_{7}$                        |
| 2              | Fujisawa | $0.32_{6}$                        |
| 3              | Fujisawa | 0.338                             |
| 4              | Fujisawa | $0.32_{4}$                        |
| 5              | Fujisawa | $0.32_{0}$                        |
| 6              | Fujisawa | 0.336                             |
| 7              | Fujisawa | $0.32_2$                          |
| 7              | Oshima   | 0.30,                             |
| 0              | Chofu    | $0.33_{1}$                        |
|                | Mean     | 0.322                             |
|                | SD       | 0.010                             |

Table 4. N<sub>2</sub>O mixing ratio in air sampled by aircraft on Jan. 19, 1979

| Altitude<br>km | Location         | Volume-mixing ratio of N <sub>2</sub> O/ppm |
|----------------|------------------|---------------------------------------------|
| 1              | Iruma            | 0.290                                       |
| 3              | Higashimatsuyama | 0.288                                       |
| 5              | Fujioka          | $0.30_{1}$                                  |
| 7              | Harunasan        | $0.28_{9}$                                  |
| 7              | Kashiwazaki      | $0.29_{8}$                                  |
| 6              | Kashiwazaki      | $0.29_{o}$                                  |
| 5              | Kashiwazaki      | $0.31_{0}$                                  |
| 4              | Kashiwazaki      | $0.30_{7}$                                  |
| 3              | Nagaoka          | $0.29_{8}$                                  |
| 2              | Nagaoka          | $0.30_{3}$                                  |
| 3              | Harunasan        | 0.306                                       |
| 2              | Gyoda            | 0.28,                                       |
|                | Mean             | 0.29,                                       |
|                | SD               | $0.00_8$                                    |

Table 5. N<sub>2</sub>O mixing ratio in air sampled by aircraft on Feb. 2, 1979

| Altitude<br>km | Location    | Volume-mixing ratio<br>of N <sub>2</sub> O/ppm |
|----------------|-------------|------------------------------------------------|
| 3              | Enoshima    | 0.298                                          |
| 3              | Oshima      | $0.30_{1}$                                     |
| 3              | Niijima     | $0.30_{4}$                                     |
| 3              | Mikurajima  | $0.30_{4}$                                     |
| 3              |             | 0.31,                                          |
| 3              | Hachijojima | $0.32_2$                                       |
| 1              |             | 0.31,                                          |
| 1              | Mikurajima  | 0.32,                                          |
| 1              | Miyakejima  | 0.313                                          |
| 1              | Oshima      | $0.30_{4}$                                     |
| 1              |             | $0.30_{5}$                                     |
| 1              | Kamakura    | 0.31,                                          |
|                | Mean        | 0.31,                                          |
|                | SD          | 0.009                                          |

Table 6. N<sub>2</sub>O mixing ratio in air sampled by aircraft on Feb. 9, 1979

| Altitude | Location | Volume-mixing ratio<br>of N <sub>2</sub> O/ppm |
|----------|----------|------------------------------------------------|
| 2.5      | Enoshima | 0.289                                          |
| 2.5      | Oshima   | 0.29,                                          |
| 2.5      | Shimoda  | $0.29_{o}$                                     |
| 2.5      | Omaezaki | $0.28_{0}$                                     |
| 2.5      |          | $0.29_{5}$                                     |
| 2.5      | Toba     | $0.29_8$                                       |
| 0.75     | Toba     | $0.30_{1}$                                     |
| 0.75     |          | $0.30_{3}$                                     |
| 0.75     | Omaezaki | 0.30,                                          |
| 0.75     | Irozaki  | 0.29,                                          |
| 0.75     | Oshima   | 0.31,                                          |
| 0.75     | Enoshima | $0.30_{3}$                                     |
|          | Mean     | 0.298                                          |
|          | SD       | $0.00_9$                                       |

Table 7.  $N_2O$  mixing ratio in air sampled by aircraft on Feb. 16, 1979

| Altitude | Location   | Volume-mixing ratio     |
|----------|------------|-------------------------|
| km       |            | of N <sub>2</sub> O/ppm |
| 1        | Eda        | 0.306                   |
| 2        | Yokohama   | 0.311                   |
| 3        | Enoshima   | $0.29_9$                |
| 4        |            | 0.31,                   |
| 5        |            | $0.29_9$                |
| 6        | Oshima     | $0.31_{0}$              |
| 7        |            | $0.30_2$                |
| 6        |            | $0.30_9$                |
| 4        | Mikurajima | $0.29_{6}$              |
| 3        | Miyakejima | $0.30_{5}$              |
| 2        | Miyakejima | $0.29_{3}$              |
| 2        |            | 0.31,                   |
| 1        | Mikurajima | $0.31_{o}$              |
| 1        | Miyakejima | $0.29_{9}$              |
| 1        | Niijima    | 0.314                   |
| 1        | Oshima     | $0.30_9$                |
| 1        | Enoshima   | $0.31_1$                |
| 1        | Eda        | 0.312                   |
|          | Mean       | 0.306                   |
|          | SD         | 0.006                   |

ard deviation (SD) for each flight. The air samples taken on Dec. 7 and Dec. 12, 1978, and Jan. 19, Feb. 2, Feb. 9, and Mar. 27, 1979, were each measured for single reference gas respectively. The mean values of each altitude are shown in Fig. 2, along with the SDs(——). The number of samples at each altitude is also shown in Fig. 2. The value at 1.5 km was that of a constant-level flight on Dec. 7, 1978. The values at 2.5 km and 0.75 km were also those of constant-level flights on Feb. 9, 1979.

The mean value of the total of 90 samples was  $0.31_0$  ppm, and the SD was  $0.01_4$  ppm (4.4%). The mean value of 48 samples, for which the difference between two measurements was less than  $\pm 2\%$ , was  $0.31_2$ 

Table 8.  $N_2O$  mixing ratio in air sampled by aircraft on Mar. 23, 1979

| Altitude<br>km | Location  | Volume-mixing ratio<br>of N <sub>2</sub> O/ppm |
|----------------|-----------|------------------------------------------------|
| 1              | Kokubunji | 0.318                                          |
| 2              | Kawagoe   | $0.32_{7}$                                     |
| 3              | Omiya     | 0.314                                          |
| 4              |           | 0.318                                          |
| 5              | Koga      | $0.31_{9}$                                     |
| 6              |           | 0.31,                                          |
| 7.5            | Iwaki     | $0.32_{1}$                                     |
| 7              |           | $0.33_0$                                       |
| 6              |           | $0.33_{0}$                                     |
| 5              | Yamatsuri | $0.30_{8}$                                     |
| 4              |           | 0.313                                          |
| 3              | Tochigi   | $0.31_{5}$                                     |
|                | Mean      | 0.31,                                          |
|                | SD        | 0.00,                                          |

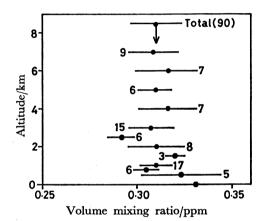



Fig. 2. The mean vertical distribution of N₂O.

 • : Mean value at the same altitude, —: Its SD.

 The number of samples at the same altitude is also shown. a) The value of 1.7 km on Dec. 7, 1978 is included in the mean value of 1.5 km. b) The value of 7.5 km on Mar. 23, 1979 is included in the mean value of 7.0 km. c) The value of the ground surface is that at Chofu Airport.

ppm, and the SD was  $0.01_3$  ppm (4.2%). These results show that the tropospheric  $N_2O$  is well mixed from the ground surface to the altitude of 7 km, and that its mixing ratio is higher than 0.30 ppm. $^{1,17,21,26,32}$ . The latter has also been shown in the measurements of the surface air in Japan, $^{23,25}$ ) though the results in Refs. 19 and 24 were very low (0.25 ppm). The mixing ratio of  $N_2O$  in the air over the sea surface is rather low  $(<0.29 \text{ ppm})^{38,39,41-43})$  except for the values of the Caribbean Sea<sup>40</sup> and the NE Pacific Ocean. This has been considered due to systematic errors among the analytical procedures.

In a previous study, the mixing ratios of N<sub>2</sub>O in the air over the ground surface were very scattered from 0.25 ppm to 0.45 ppm.<sup>45)</sup> This wide distribution, which was also observed by Katou *et al.*,<sup>19)</sup> has not

<sup>††</sup> The cause of this discrepancy is now under investigation.

Table 9. N<sub>2</sub>O mixing ratio in air sampled by AIRCRAFT AND MEASURED BY THE GC-TCD METHOD

| Date<br>(1978) | Altitude<br>km | Location Vo     | olume-mixing ratio of $N_2O/ppm$ |
|----------------|----------------|-----------------|----------------------------------|
| Feb. 2         | 7              | Sagami Bay      | 0.322                            |
|                | 4              | Sagami Bay      | $0.34_{4}$                       |
|                | 2              | Sagami Bay      | $0.29_{3}$                       |
| Mar. 3         | 7              | Hayama          | $0.32_{0}$                       |
|                | 4              | Miyakejima      | $0.34_{0}$                       |
|                | 1              | Oshima-Hatsushi | $ima 0.30_2$                     |
| Oct. 26        | 3              | Oshima          | $0.30_2$                         |
|                | 1 .            | Enoshima        | $0.32_{4}$                       |
|                |                | Mean            | 0.318                            |
|                |                | SD              | $0.01_{9}$                       |

been observed in the measurements made by the GC-ECD method. The same results have been observed in the measurements made by a GC-MS method.<sup>24)</sup> Values such as 0.45 ppm are too high to be explained by the effect of the exhaust gas of automobiles.<sup>25)</sup> The error in the direct preconcentration of N2O from the outdoor air must have been much larger than the estimated one  $(\pm 3\%)$ .

The SD of the sample measurements was nearly equal to the error in the measuring technique. This would imply that the tropospheric mixing ratio of N<sub>2</sub>O is more uniform than the results of the present study indicate and that the tropospheric lifetime of N<sub>2</sub>O is quite long.<sup>26)</sup>

Before the ECD was equipped with, from 201 to 30 l of air was sampled in tedlar or aflon bags. The N<sub>2</sub>O in the sample air in these bags was preconcentrated on molecular sieve 5A (-72 °C) and then analysed by the same GC-TCD method as was adopted in the previous study. 45) The concentration of N<sub>2</sub>O in these bags was constant for at least a week.††† The results of 8 air samples, which are shown in Table 9, were considered to be in agreement with the results obtained by the GC-ECD method.

We would like to thank Dr. Masao Misaki, Mr. Yoshio Toyama, Mr. Izuo Kanazawa, and Mrs. Miwako Ikegami for their collaboration in the air sampling by aircraft.

## References

- J. Hahn and C. Junge, Z. Naturforsch., Teil A, 32, 190 (1977).
- 2) D. R. Bates and P. B. Hays, Planet. Space Sci., 154 189 (1967).
- 3) J. M. Bremner and A. M. Blackmer, Science, 199 295 (1978)
- 4) D. J. McKenney, D. L. Wade, and W. I. Findlay, Geophys. Res. Lett., 5, 777 (1978).
- 5) A. D. Matthais, A. M. Blackmer, and J. M. Bremner, Geophys. Res. Lett., 6, 441 (1979).
- 6) C. C. Delwiche, Pure Appl. Geophys., 116, 414 (1978). 7) R. E. Rebbert and P. Ausloos, Geophys. Res. Lett., **5**, 761 (1978).
- 8) K. A. Brice, A. E. J. Eggleton, and S. A. Penkett, Nature, 268, 127 (1977).
- This was ascertained by the GC-ECD method.

- 9) M. B. McElroy and J. C. McConnel, J. Atmos. Sci., **28**, 1095 (1971).
- 10) P. J. Crutzen, Quart. J. Roy. Met. Soc., 96, 320 (1970).
- 11) H. Johnston, Science, 173, 517 (1971).
- 12) CIAP Monograph, DOT-TST-75-51 (1975).
- 13) P. J. Crutzen and D. H. Enhalt, Ambio, 6, 112 (1977).
- 14) K. Schütz, C. Junge, R. Beck, and B. Albrecht, J. Geophys. Res., 75, 2230 (1970).
- 15) M. D. LaHue, H. D. Axelrod, and J. P. Lodge, Jr., Anal. Chem., 43, 1113 (1971).
- 16) H. B. Singh, L. Salas, H. Shigeishi, and A. Crawford, Atmos. Environ., 11, 819 (1977).
- 17) D. Pierotti and R. A. Rasmussen, J. Geophys. Res., **82**, 5823 (1977).
- 18) Y. S. Chang, J. H. Shaw, J. G. Calvert, and W. M. Uselman, J. Quant. Spectrosc. Radiat. Transfer, 18, 589 (1977).
- 19) T. Katou, Y. Hanai, and M. Mimura, Bull. Inst. Environ. Sci. Tech., Yokohama National Univ., 3, 5 (1977).
- 20) P. D. Goldan, W. C. Kuster, D. L. Albritton, and A. L. Schmeltekopf, J. Geophys. Res., 83, 935 (1978).
- 21) R. J. Cicerone, J. D. Shetter, D. H. Stedman, T. J. Kelly, and S. C. Liu, *J. Geophys. Res.*, **83**, 3042 (1978).
- 22) Th. R. Thijsse, Atmos. Environ., 12, 2001 (1978).
- 23) S. Araki, S. Suzuki, M. Yamada, H. Suzuki, and T. Hobo, J. Chromatogr. Sci., 16, 249 (1978).
- 24) Y. Hanai, T. Katou, and T. Arai, Bull. Inst. Environ. Sci. Tech., Yokohama National Univ., 5, 35 (1979).
- 25) T. Hiraki, M. Tamaki, and H. Watanabe, Report Environ. Sci. Inst. Hyogo Prefecture, No. 12, 1 (1980).
- 26) C. R. Roy, J. Geophys. Res., 84, 3711 (1979).
- 27) A. Goldan, D. G. Murcray, F. H. Murcray, and W. J. Williams, J. Opt. Soc. Am., 63, 843 (1973).
- 28) D. H. Ehhalt, N. Roper, and H. E. Moore, J. Geophys. Res., 80, 1653 (1975).
- 29) R. A. Rasmussen, J. Kransec, and D. Pierotti, Geophys. Res. Lett., 3, 615 (1976).
- 30) A. L. Schmeltekopf, D. L. Albritton, P. J. Crutzen, P. D. Goldan, W. J. Harrop, W. R. Henderson, J. R. McAfee, M. McFarland, H. I. Schiff, T. L. Thompson, D. J. Hofmann, and N. T. Kjome, J. Atmos. Sci., 34, 729 (1977).
- 31) P. Fabian, R. Borchers, K. H. Weiler, U. Schmidt, A. Volz, D. H. Ehhalt, W. Seiler, and F. Müller, J. Geophys. Res., 84, 3149 (1979).
- 32) P. D. Goldan, W. C. Kuster, D. L. Albritton, and A. L. Schmeltekopf, J. Geophys. Res., 85, 413 (1980).
- 33) A. L. Schmeltekopf, P. H. Goldan, W. R. Henderson, W. J. Harrop, T. L. Thompson, F. C. Fehsenfeld, H. I. Schiff, P. J. Crutzen, I. S. A. Isaksen, and E. E. Ferguson, Geophys. Res. Lett., 2, 393 (1975).
- 34) D. H. Ehhalt, L. E. Heidt, R. H. Lueb, and E. A. Martell, J. Atmos. Sci., 32, 163 (1975).
- 35) C. C. Gallagher and R. V. Pieri, J. Atmos. Sci., 34, 1481 (1977).
- 36) J. F. Vedder, B. J. Tyson, P. B. Brewer, C. A. Boitnott, and E. C. Y. Inn, Geophys. Res. Lett., 5, 33 (1978).
- 37) B. Y. Tyson, J. F. Vedder, J. C. Arvesen, and R. B. Brewer, Geophys. Res. Lett., 5, 369 (1978).
- 38) J. Hahn, Anal. Chem., 44, 1889 (1972).39) J. Hahn, Tellus, 26, 160 (1974).
- T. Yoshinari, Marine Chem., 4, 189 (1976). 40)
- Y. Cohen, Anal. Chem., 49, 1238 (1977). 41)
- Y. Cohen and L. I. Gorden, J. Geophys. Res., 84, 42) 347 (1979).
- 43) J. W. Elkins, Anal. Chem., 52, 263 (1980).
- 44) M. B. McElroy, J. W. Elkins, S. C. Wofsy, and Y. L. Yung, Rev. Geophys. Space Phys., 14, 143 (1976).
- 45) M. Hirota, Bull. Chem. Soc. Jpn., 51, 3075 (1978).
- W. E. Wentworth, E. Chen, and R. Freeman, J. Chem. Phys., 55, 2075 (1971).
- 47) R. Bock and K. Schütz, Z. Anal. Chem., 237, 321 (1968).